Skip to content

Phased Array Fundamentals

Theory of phased array antenna operation.

Overview

A phased array is an antenna system that uses multiple radiating elements with controlled phase and amplitude to electronically steer the beam without mechanical movement.

Array Factor

The array factor describes the radiation pattern contribution from element positioning:

\[ AF(\theta, \phi) = \sum_{n=1}^{N} a_n e^{j(k \mathbf{r}_n \cdot \hat{\mathbf{r}} + \alpha_n)} \]

Where: - \(a_n\) = amplitude weight of element \(n\) - \(k = 2\pi/\lambda\) = wavenumber - \(\mathbf{r}_n\) = position of element \(n\) - \(\hat{\mathbf{r}}\) = unit vector in observation direction - \(\alpha_n\) = phase of element \(n\)

Linear Array

For a uniform linear array along the z-axis with spacing \(d\):

\[ AF(\theta) = \sum_{n=0}^{N-1} e^{jn(kd\cos\theta + \beta)} \]

Where \(\beta\) is the progressive phase shift.

Closed form:

\[ AF(\theta) = \frac{\sin(N\psi/2)}{\sin(\psi/2)}, \quad \psi = kd\cos\theta + \beta \]

Rectangular Planar Array

For an \(N_x \times N_y\) array:

\[ AF(\theta, \phi) = AF_x(\theta, \phi) \cdot AF_y(\theta, \phi) \]
\[ AF_x = \frac{\sin(N_x \psi_x / 2)}{\sin(\psi_x / 2)}, \quad \psi_x = kd_x \sin\theta\cos\phi + \beta_x \]
\[ AF_y = \frac{\sin(N_y \psi_y / 2)}{\sin(\psi_y / 2)}, \quad \psi_y = kd_y \sin\theta\sin\phi + \beta_y \]

Antenna Gain

Directivity

The directivity is the ratio of radiation intensity in a given direction to the average:

\[ D = \frac{4\pi U(\theta, \phi)}{P_{rad}} \]

Peak directivity for a uniform array (boresight):

\[ D_0 \approx \frac{4\pi A_{eff}}{\lambda^2} = \frac{4\pi}{\lambda^2} \cdot N_x d_x \cdot N_y d_y \cdot \lambda^2 = 4\pi N_x d_x N_y d_y \]

Gain

Gain includes efficiency:

\[ G = \eta_a \cdot D \]

Where aperture efficiency \(\eta_a\) typically ranges from 0.5 to 0.8.

For uniform amplitude and half-wavelength spacing (\(d = 0.5\lambda\)):

\[ G \approx \eta_a \cdot \pi \cdot N_x \cdot N_y \]

In dB:

\[ G_{dB} = 10\log_{10}(\eta_a \cdot \pi \cdot N) \]

For \(\eta_a = 0.65\) and \(N = 64\) elements:

\[ G_{dB} = 10\log_{10}(0.65 \cdot \pi \cdot 64) \approx 22.1 \text{ dB} \]

Beamwidth

Half-Power Beamwidth (HPBW)

For a uniform linear array:

\[ \theta_{3dB} \approx \frac{0.886 \lambda}{N d \cos\theta_0} \]

At boresight (\(\theta_0 = 0\)) with \(d = 0.5\lambda\):

\[ \theta_{3dB} \approx \frac{1.77}{N} \text{ radians} = \frac{101°}{N} \]

For a rectangular array:

\[ \theta_{3dB,x} \approx \frac{101°}{N_x}, \quad \theta_{3dB,y} \approx \frac{101°}{N_y} \]

Examples

Array Elements HPBW
8×8 64 12.6° × 12.6°
16×16 256 6.3° × 6.3°
32×32 1024 3.2° × 3.2°

Beam Steering

Electronic beam steering is achieved by applying a progressive phase shift:

\[ \beta_x = -kd_x \sin\theta_0 \cos\phi_0 $$ $$ \beta_y = -kd_y \sin\theta_0 \sin\phi_0 \]

Where \((\theta_0, \phi_0)\) is the desired beam direction.

Scan Loss

When scanning off boresight, gain is reduced:

\[ G(\theta) \approx G_0 \cos^p(\theta) \]

Where \(p\) depends on element pattern (typically \(p \approx 1.2-1.5\)).

Approximate scan loss:

Scan Angle Approximate Loss
0 dB
30° 1-2 dB
45° 2-3 dB
60° 3-5 dB

Grating Lobes

Grating lobes appear when element spacing exceeds \(\lambda\). To avoid grating lobes when scanning to angle \(\theta_0\):

\[ d < \frac{\lambda}{1 + |\sin\theta_0|} \]

For \(\theta_0 = 60°\):

\[ d < \frac{\lambda}{1 + \sin(60°)} = \frac{\lambda}{1.866} \approx 0.54\lambda \]

This is why half-wavelength spacing (\(d = 0.5\lambda\)) is common.

Sidelobe Level

For a uniform amplitude array, the first sidelobe is approximately -13.2 dB below the main lobe.

Tapering

Amplitude tapering reduces sidelobes at the cost of beamwidth and gain:

Taper First SLL Beamwidth Factor Efficiency
Uniform -13.2 dB 1.0 1.0
Hamming -42 dB 1.36 0.73
Taylor -25 dB -25 dB 1.1 0.95
Taylor -35 dB -35 dB 1.2 0.87

Power and EIRP

Total Radiated Power

\[ P_{rad} = N \cdot P_{elem} \cdot \eta_{feed} \]

Where: - \(N\) = number of elements - \(P_{elem}\) = power per element - \(\eta_{feed}\) = feed network efficiency

EIRP

Effective Isotropic Radiated Power:

\[ EIRP = P_{rad} \cdot G = N \cdot P_{elem} \cdot \eta_{feed} \cdot G \]

In dB:

\[ EIRP_{dBW} = P_{rad,dBW} + G_{dB} \]

Example Calculation

For an 8×8 array with: - \(d_x = d_y = 0.5\lambda\) - \(P_{elem} = 1\) W - \(\eta_a = 0.65\) - \(\eta_{feed} = 0.8\)

Gain: $$ G = 0.65 \cdot \pi \cdot 64 = 130.7 = 21.2 \text{ dB} $$

Radiated Power: $$ P_{rad} = 64 \cdot 1 \cdot 0.8 = 51.2 \text{ W} = 17.1 \text{ dBW} $$

EIRP: $$ EIRP = 17.1 + 21.2 = 38.3 \text{ dBW} $$

Beamwidth: $$ \theta_{3dB} \approx \frac{101°}{8} = 12.6° $$

See Also