Skip to content

Theory

Background theory and equations for phased array systems.

Contents

Topic Description
Phased Array Fundamentals Array factor, gain, beamwidth
Link Budget Equations Communications link analysis
Radar Equation Radar range and detection
Pareto Optimization Multi-objective trade-offs

Quick Reference

Antenna Gain

For a uniform rectangular array with \(N = n_x \times n_y\) elements:

\[ G \approx \eta_a \cdot 4\pi \cdot n_x d_x \cdot n_y d_y \]

Where \(\eta_a\) is aperture efficiency (~0.6-0.7) and \(d_x, d_y\) are spacings in wavelengths.

Free Space Path Loss

\[ L_{FSPL} = 20 \log_{10}\left(\frac{4\pi d f}{c}\right) = 32.45 + 20\log_{10}(f_{MHz}) + 20\log_{10}(d_{km}) \]
\[ \begin{aligned} EIRP &= P_{tx} + G_{tx} - L_{tx} \\ P_{rx} &= EIRP - L_{path} + G_{rx} \\ SNR &= P_{rx} - N \\ Margin &= SNR - SNR_{required} \end{aligned} \]

Radar Range Equation

\[ SNR = \frac{P_t G^2 \lambda^2 \sigma}{(4\pi)^3 R^4 k T_s B L} \]

Pareto Optimality

Design \(A\) dominates design \(B\) if:

  • \(f_i(A) \leq f_i(B)\) for all objectives (minimization)
  • \(f_j(A) < f_j(B)\) for at least one objective

Key Constants

Constant Symbol Value
Speed of light \(c\) 299,792,458 m/s
Boltzmann constant \(k\) 1.38×10⁻²³ J/K
Reference temperature \(T_0\) 290 K

Further Reading

  • Skolnik, M.I., "Introduction to Radar Systems"
  • Balanis, C.A., "Antenna Theory: Analysis and Design"
  • Mailloux, R.J., "Phased Array Antenna Handbook"