Theory¶
Background theory and equations for phased array systems.
Contents¶
| Topic | Description |
|---|---|
| Phased Array Fundamentals | Array factor, gain, beamwidth |
| Link Budget Equations | Communications link analysis |
| Radar Equation | Radar range and detection |
| Pareto Optimization | Multi-objective trade-offs |
Quick Reference¶
Antenna Gain¶
For a uniform rectangular array with \(N = n_x \times n_y\) elements:
\[
G \approx \eta_a \cdot 4\pi \cdot n_x d_x \cdot n_y d_y
\]
Where \(\eta_a\) is aperture efficiency (~0.6-0.7) and \(d_x, d_y\) are spacings in wavelengths.
Free Space Path Loss¶
\[
L_{FSPL} = 20 \log_{10}\left(\frac{4\pi d f}{c}\right) = 32.45 + 20\log_{10}(f_{MHz}) + 20\log_{10}(d_{km})
\]
Link Budget¶
\[
\begin{aligned}
EIRP &= P_{tx} + G_{tx} - L_{tx} \\
P_{rx} &= EIRP - L_{path} + G_{rx} \\
SNR &= P_{rx} - N \\
Margin &= SNR - SNR_{required}
\end{aligned}
\]
Radar Range Equation¶
\[
SNR = \frac{P_t G^2 \lambda^2 \sigma}{(4\pi)^3 R^4 k T_s B L}
\]
Pareto Optimality¶
Design \(A\) dominates design \(B\) if:
- \(f_i(A) \leq f_i(B)\) for all objectives (minimization)
- \(f_j(A) < f_j(B)\) for at least one objective
Key Constants¶
| Constant | Symbol | Value |
|---|---|---|
| Speed of light | \(c\) | 299,792,458 m/s |
| Boltzmann constant | \(k\) | 1.38×10⁻²³ J/K |
| Reference temperature | \(T_0\) | 290 K |
Further Reading¶
- Skolnik, M.I., "Introduction to Radar Systems"
- Balanis, C.A., "Antenna Theory: Analysis and Design"
- Mailloux, R.J., "Phased Array Antenna Handbook"